concept of an ecosystem

Living organisms cannot live isolated from their non-living environment be­cause the latter provides materials and energy for the survival of the former i.e. there is interaction between a biotic community and its environment to produce a stable system; a natural self-sufficient unit which is known as an ecosystem.

An ecosystem is, therefore, defined as a natural functional ecological unit com­prising of living organisms (biotic community) and their non-living (abiotic or physio chemical) environment that interact to form a stable self-supporting sys­tem. A pond, lake, desert, grassland, meadow, forest etc. are common examples of ecosystems.

Controls on Ecosystem Function

Now that we have learned something about how ecosystems are put together and how materials and energy flow through ecosystems, we can better address the question of "what controls ecosystem function"? There are two dominant theories of the control of ecosystems. The first, called bottom-up control, states that it is the nutrient supply to the primary producers that ultimately controls how ecosystems function. If the nutrient supply is increased, the resulting increase in production of autotrophs is propagated through the food web and all of the other trophic levels will respond to the increased availability of food (energy and materials will cycle faster). 
The second theory, called top-down control, states that predation and grazing by higher trophic levels on lower trophic levels ultimately controls ecosystem function. For example, if you have an increase in predators, that increase will result in fewer grazers, and that decrease in grazers will result in turn in more primary producers because fewer of them are being eaten by the grazers. Thus the control of population numbers and overall productivity "cascades" from the top levels of the food chain down to the bottom trophic levels.
So, which theory is correct? Well, as is often the case when there is a clear dichotomy to choose from, the answer lies somewhere in the middle. There is evidence from many ecosystem studies that BOTH controls are operating to some degree, but that NEITHER control is complete. For example, the "top-down" effect is often very strong at trophic levels near to the top predators, but the control weakens as you move further down the food chain. Similarly, the "bottom-up" effect of adding nutrients usually stimulates primary production, but the stimulation of secondary production further up the food chain is less strong or is absent.
Thus we find that both of these controls are operating in any system at any time, and we must understand the relative importance of each control in order to help us to predict how an ecosystem will behave or change under different circumstances, such as in the face of a changing climate.

More in sem3
Inheritance in c++

Inheritance in c++ One of the most important concepts in object oriented programming is inheritance. Inheritance allows us to define...

Close