producers, consumers and decomposers

The environment has three important constituents. These are:

(a) Physical

(b) Biological

(c) Social

(a) The Physical Constituent of environment includes soil, water, air, climate, temperature, light etc. These are also called abiotic constituents of the environment. This part of the environment mainly determines the type of the habitat or living conditions of the human population. This physical constituent of the environment is again divided into three parts.

These are:

(i) Atmosphere (gas)

(ii) Hydrosphere (liquid)

(iii) Lithosphere (solid)

These three parts represent the three important states of matter constituting the environment. This physical component of environment only consists of non-living things like air, water and soil. All these non­living things influence much to all living organisms including man. Water and temperature are the most important abiotic components affecting living beings. Larger proportion of body’s weight is due to water.

All living organisms require water for their survival. Besides water is the main vital fluid to keep optimum temperature of the body. All life activates work in a particular range of temperature. When temperature will be in excess of necessity, living beings will die.

Air is main physical component which provides oxygen for respiration. All living beings including plants & animals require oxygen for their existence. Oxygen is taken into the body by respiration process and comes out in from of carbon dioxide. Plants, on the other hand takes in carbon dioxide for food preparation during photosynthesis and gives out oxygen to the surrounding.

Soil is the most important for all living beings to create their habitat. It is the soil in which plant grows and man constructs houses to live in. It is the ground water present in the soil which provides for drinking and other farming activities.

(b) The biological constituent of environment is also called biotic component of environment. This component consists of all living things like plants, animals and small micro-organisms like bacteria. This component interacts with the abiotic component of the environment. This interaction of two components forms various ecosystems like pond ecosystem, marine ecosystem, desert ecosystem etc.

The self sufficient large ecosystem of the earth is called Biosphere. All ecosystems consist of three different types of living organisms.

These three types are named as:

(a) Producers

(b) Consumers

(c) Decomposers.

Producers are generally green plants and other photosynthetic bacteria which produces various 犀利士
organic substances such as carbohydrates, proteins etc. with the help of water, soil and light energy. Consumers depend for their nutrition on the organic food produced by the green plants Decomposers bring about the decomposition of dead plants and animals and return various important minerals for the running of the biogeochemical cycles.

(c) The social constituent of environment mainly consists of various groups of population of different living organisms like birds, animals etc. Man is the most intelligent living organism. Like other living creatures, man builds house, prepares food and releases waste materials to the environment. Man is a social animal as told by Greek philosopher, Aristotle. He makes various laws, policies for the proper functioning of the society.

The three components of the environment give rise to four important zones. These are Atmosphere, Hydrosphere, Lithosphere and Biosphere. There is continuous interaction among these four zones. These interactions involve the transport of various elements, compounds and energy forms. These zones are explained as follows. [Fig. l (A).l]

producers, consumers and decomposers


The earth’s atmosphere, a complex fluid system of gases and suspended particles, did not have its origin in the beginning of the planet. The atmosphere as of today has been derived from the Earth itself by chemical and biochemical reactions. Although the fluid system forms a gaseous envelope around the Earth, its boundaries are not easily defined. They can be arbitrarily defined as the Earth’s atmosphere interface and space interface.

The gases like Nitrogen. Oxygen, Argon, Carbon dioxide and water vapour etc. together make up the total volume of atmosphere. Together with suspended particulates, viz. dust and soot constitute the gaseous turbidity particularly in troposphere. However, the composition of atmosphere and so also the structure is variable in time and space.

The vertical structure of atmosphere is very much related to radiant energy absorption and this can be described in terms of variable of temperature [Fig. 1(A) 2]. Below 60 km. there are two main zones of absorption at the Earth’s surface and in the Ozone layer. The absorbed energy is redistributed by radiation, conduction and convection.

producers, consumers and decomposers

There are, therefore, two temperature maxima: at the Earth’s surface and at an elevation of 50 km. above each of these maxima there is mainly convectional mixing. Temperature in these mixing layers decreases with height above the heat source. The lower of these two zones is referred to as troposphere and the upper is the mesosphere.

These are separated by a layer of little mixing in which the atmosphere tends towards a layered structure referred as the stratosphere. Between the ionosphere and the stratosphere is the tropopause which marks the approximate upper limit of mixing in the lower atmosphere. The average height of this is usually given as 11 km., but this varies over the earth.

In tropical latitude its average height is 16 km. and in polar latitude it is only 10 km. There is one further zone of heating, above the mesosphere and more than 90 km. from the Earth’s surface where shortwave ultraviolet radiation is absorbed by many oxygen molecules present at this height. This is referred to as thermosphere.

Within this layer, ionization occurs which produces charged ions and free electrons. Beyond the thermosphere, at a height of approximately 700 km, lies the exosphere where the atmosphere has an extremely low density. At this level there are increasing numbers of ionization particles which are concentrated into bands referred to as the Van Allen radiation belts.

However, this simple model of vertical structure can be simplified to provide a model of the atmosphere as two concentric shells the boundaries of which are defined by the stratopause at approximately 50 km. above the Earth’s surface and a hypothetical outer limit of the atmosphere, at approximately 80,000 km.

Below the stratopause, in the stratosphere and troposphere, there is 99% of the total mass of the atmosphere and it is at this level that atmospheric circulatory systems operate. Beyond the stratopause a layer of nearly 80,000 km. thick contains only 1 % of total atmospheric mass and experiences ionization by high-energy, short wavelength solar radiation. The temperature profiles of atmospheric layer are given in Fig. 1(A).2.


It includes the surface water and its surrounding interface. It is vital for life molecule to survive. Water possesses a number of physical and chemical properties that help the molecule to act as best suited medium for life activities. The movement of water from earth surface to atmosphere through hydrological cycle appears to be a close system.

Water is the most abundant substance on the Earth’s surface. The oceans cover approximately 71% water of the planet, glaciers and ice caps cover additional areas. Water is also found in lakes and streams, in soils and underground reservoirs, in the atmosphere, and in the bodies of all living organism. Thus, water in all its forms- ice, liquid, water and water vapour- is very familiar to us.

We use water at home, in industry, in agriculture, and for recreation. These applications differ widely in the quantity and quality of the water that they require. In one way or another we use all available sources- inland waters, ground water, and even oceanic water.

The demand for global water resources increasing day-by-day though availability pure fresh water has been decreasing severely. Thus there is need to make precious use of pure fresh water and their fruitful storage and conservation. A simplified outline of hydrological cycle is given in Fig. 1(A).3.

producers, consumers and decomposers


It is the outer boundary layer of solid earth and the discontinuity within the mantle. The outer boundary forms a complex interface with the atmosphere and hydrosphere and is also the environment in which life has evolved. The inner boundary is adjacent to rock, which is near its melting point and is capable of motion relative to the lithosphere above.

Basically lithosphere is nothing but a crustal system composed of various layers: Core, mantle and outer crust. Various elements constitute such crustal layer in mixture of different proportions. In general, the earth curst is composed of three major classes of rocks (as classified on the basis of their mode of origin):

Igneous rocks, sedimentary rocks and metamorphosed rocks. There are two types of crusts – continental crust which is composed of granitic rocks in silicon aluminium and with a mean density of 2.8; the other oceanic crust which is basaltic in composition consisting of more basic minerals and has a mean density of 3.0. Overall, the average density of the earth is 5.5 gm/c.c.

Interaction between the crustal system of the lithosphere, atmosphere and biosphere takes place where continental crust is exposed above sea-level. At the land/air interface crustal material becomes exposed to inputs of solar radiant energy, precipitation and atmospheric gases. These inputs are often modified by or operate through the effects of the living systems of the biosphere. Under the influence of these inputs, crustal rocks are broken down by weathering process and are transferred to fine porus crustal layers called soil.

An outline of earth layers and composition of crustal materials is given in Fig. 1(A).4.

producers, consumers and decomposers


The biosphere encompasses all the zones on the Earth in which life is present, i.e. entire bio-resources of the earth. It develops on earth since 4.5 billion year through evolutionary process. At the top of the lithosphere, throughout the hydrosphere and into the lower atmosphere, life of diverse type exists. These bio-resources and their surrounding constitute the “Biosphere” where mankind acts as the most evolved creature.

The steps involved in the origin of life on earth is very complex and require several centuries. Considerable uncertainty surrounds the details of atmospheric composition, the processes involved and even the sequence of some events leading to formation of living cells. The conventional view held that the earliest organism on the plant were heterotrophic prokaryotic bacteria. Subsequently, autotrophic prokaryotes & eukaryotes start appearing as stepwise evolutionary changes. The major steps of origin of life in primitive earth are depicted in Fig. 1(A).5.

producers, consumers and decomposers

Life on Earth requires water, a source of energy (sun light) and various nutrients found in the soil, water and air. Suitable combinations of these essentials cannot be found high in the upper atmosphere or deep underground. These exists only in a narrow layer near the surface of the Earth.

This biosphere layer extends over most of the surface of the Earth. It includes the upper layers of the Earth’s crust and the thick layer of soil that supports plant life. This zone of life also extends about 8 km. up into the atmosphere (air borne biota) and much as 8 km. down into the depths of the sea. Living organisms are not distributed uniformly on globe: few organisms live on polar ice caps and glaciers, whereas many live in tropical rainforests (Fig. 1(A).6).

producers, consumers and decomposers

Within the biosphere, there are several major regions containing specific types of ecosystems. These major regions are called biomes. Biomes are then recognized by the types of dominant ecosystem- tropical rainforests, temperate forests, prairies, deserts, and arctic tundra. The ecosystems again are composed of population which is composed of individuals. The global estimate of species of both prokaryotes and eukaryotic life forms are given in Tables 1(A).1 and 1(A).2 These figures imply the fact that how diverse is our biological world on earth is?

producers, consumers and decomposers

producers, consumers and decomposers