Tacticity is the relative stereochemistry of adjacent chiral centers within a macromolecule. The practical significance of tacticity rests on the effects on the physical properties of the polymer. The regularity of the macromolecular structure influences the degree to which it has rigid, crystalline long range order or flexible, amorphous long range disorder. Precise knowledge of tacticity of a polymer also helps understanding at what temperature a polymer melts, how soluble it is in a solvent and its mechanical properties.

A tactic macromolecule in the IUPAC definition is a macromolecule in which essentially all the configurational (repeating) units are identical. Tacticity is particularly significant in vinyl polymers of the type -H2C-CH(R)- where each repeating unit with a substituent R on one side of the polymer backbone is followed by the next repeating unit with the substituent on the same side as the previous one, the other side as the previous one or positioned randomly with respect to the previous one. In a hydrocarbon macromolecule with all carbon atoms making up the backbone in a tetrahedral molecular geometry, the zigzag backbone is in the paper plane with the substituents either sticking out of the paper or retreating into the paper. This projection is called the Natta projection after Giulio Natta. Monotactic macromolecules have one stereoisomeric atom per repeat unit, ditactic to n-tactic macromolecules have more than one stereoisomeric atom per unit.

Tacticity may be measured directly using proton or carbon-13 NMR. This technique enables quantification of the tacticity distribution by comparison of peak areas or integral ranges corresponding to known diads (r, m), triads (mm, rm+mr, rr) and/or higher order n-ads depending on spectral resolution. In cases of limited resolution stochastic methods such as Bernoullian or Markovian analysis may also be used to fit the distribution and back then forward predict higher n-ads and calculate the isotacticity of the polymer to the desired level.

Other techniques sensitive to tacticity include x-ray powder diffraction, secondary ion mass spectrometry (SIMS),vibrational spectroscopy (FTIR)  and especially two-dimensional techniques. Tacticity may also be inferred by measuring another physical property, such as melting temperature, when the relationship between tacticity and that property is well-established.

Read previous post:
Properties of Nanoparticles

Properties of Nanoparticles Nanoparticles are important scientific tools that have been and are being explored in various biotechnological, pharmacological and...